Exploiting Source-Object Networks to Resolve Object Conflicts in Linked Data

نویسندگان

  • Wenqiang Liu
  • Jun Liu
  • Haimeng Duan
  • Wei Hu
  • Bifan Wei
چکیده

Considerable effort has been made to increase the scale of Linked Data. However, an inevitable problem when dealing with data integration from multiple sources is that multiple different sources often provide conflicting objects for a certain predicate of the same real-world entity, so-called object conflicts problem. Currently, the object conflicts problem has not received sufficient attention in the Linked Data community. In this paper, we first formalize the object conflicts resolution problem as computing the joint distribution of variables on a heterogeneous information network called the Source-Object Network, which successfully captures the all correlations from objects and Linked Data sources. Then, we introduce a novel approach based on network effects called ObResolution(Object Resolution), to identify a true object from multiple conflicting objects. ObResolution adopts a pairwise Markov Random Field (pMRF) to model all evidences under a unified framework. Extensive experimental results on six real-world datasets show that our method exhibits higher accuracy than existing approaches and it is robust and consistent in various domains.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

Truth Discovery to Resolve Object Conflicts in Linked Data

In the community of Linked Data, anyone can publish their data as Linked Data on the web because of the openness of the Semantic Web. As such, RDF (Resource Description Framework) triples described the same real-world entity can be obtained from multiple sources; it inevitably results in conflicting objects for a certain predicate of a real-world entity. The objective of this study is to identi...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

TruthDiscover: Resolving Object Conflicts on Massive Linked Data

Considerable effort has been made to increase the scale of Linked Data. However, because of the openness of the Semantic Web and the ease of extracting Linked Data from semi-structured sources (e.g., Wikipedia) and unstructured sources, many Linked Data sources often provide conflicting objects for a certain predicate of a real-world entity. Existing methods cannot be trivially extended to reso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017